
So 1

ECE 501 Digital Systems Laboratory

Experiment 10 – Design of Finite State Machines

Seth So

Lab Partner: Martin Klena

Station 27

Date Performed: 3-21-18 to 3-24-18

Date Written: 3-24-18

…….

So 2

Introduction:

This laboratory was a set of four procedures to design, simulate, implement, and test a finite state

machine for a synchronous, sequential circuit. The circuit must have two single-bit inputs A and

B, and a single-bit output Z. Z will output a repeating sequence of digits based on the inputs A

and B according to Figure 1 below:

Figure 1: Required inputs and outputs of the finite state machine

Z should sequentially progress to the next bit in each sequence (shown in Figure 1) with each

rising clock edge and loop back at the beginning. This clock edge must be set by a 555-timer

circuit, which acts as the main clock according to which the rest of the circuit must act. This is

what makes the timing synchronous and independent of different outputs throughout the circuit.

The circuit must also use 7474 D flip-flops to store the states, and the number of logic gates and

ICs needed should be minimized if possible.

The following report details the procedure followed and results obtained while making the

circuit.

Part I: Finite State Machine

Purpose:

The purpose of part 1 was to review synchronous design techniques to use in designing a

finite state machine that satisfied the criteria listed in the Introduction. Methods from the

0132 Digital Logic course (i.e. K-map, state transition diagram, state assignment, and

state transition table) were followed to design and optimize the logic of the circuit.

Procedure:

1. The first step in designing the finite state machine was choosing to make a Moore or

Mealy machine. Moore machines are state-defined (output is tied to the state). They are

simpler in concept, they but can become more complex than Mealy machines when many

states are required. The output of Mealy machines is determined by current state as well

as input, which helps to cut down on the total number of states needed. Therefore, a

Mealy machine design was chosen since it would only require 8 states compared to 32

states needed by a Moore machine.

2. Using the Mealy design, a state transition diagram was created that would output the

proper sequence for each combination of inputs (see Figure 1). Because there are 8 bits in

each sequence, the design will have 8 states. Each clock cycle will move the current state

AB (Input) Z (Output Sequence)

00 0000000100000001…

01 0000011100000111…

10 0001111100011111…

11 0111111101111111…

So 3

to the next state and output a bit of the sequence based off the inputs. See Figure 2 in the

results section for the diagram.

3. Next a state transition table was made from the state transition diagram. It shows current

state, possible inputs (A and B), and the output (Z) and next state associated with each

input. Additionally, the states were assigned 3-bit binary numbers (Current state = D2 D1

D0 and Next state = D2
+ D1

+ D0
+). This would allow for the derivation of the logic

expressions using K-maps. The complete table is shown in Figure 3 in the results section.

4. K-maps were then used on the transition table to find the minimized next state logic for

next state bits D2
+, D1

+, and D0
+ in terms of current state bits D2, D1, and D0. The input

bits were not required, because the machine was designed so that the current state would

move onto the next state every clock edge regardless of the input. The results for each of

these are documented in Figure 4 a-c in the results section.

5. K-maps were used to find the output bit Z. Here, Z was dependent on both current state

and input, so a slightly more complicated five-variable K-map had to be computed to

obtain the minimized output logic. The result of this K-map is displayed in Figure 5

below in the results section.

6. From the final expressions for next state logic and output logic, the total number of gates

and physical components needed for implementation was determined. The list is

compiled in the table in Figure 6.

Results:

Figure 2: Finite state transition diagram (Mealy design)

Figure 2 above displays the state transition diagram for the proposed finite machine design.

There are 8 states, 1-8, for each of the 8 bits in the output sequence. This also corresponds to 8

clock cycles, as each state moves to the next on the rising edge of every clock cycle. The

diagram follows normal Mealy machine convention – the arrows indicate the which state comes

So 4

next, and above each arrow is the output for given input (
𝐼𝑛𝑝𝑢𝑡𝑠

𝑂𝑢𝑡𝑝𝑢𝑡
=

𝐴𝐵

𝑍
). The output is dependent

on current state and inputs, but next state is only dependent on current state. After reaching state

8 (D2D1D0 = 111), the system will always output a 0 and loop back to state 1 on the next clock

cycle. Because the 8 states are counted in binary, there are 3 state bits D2, D1, and D0. Each of

these state bits will be realized with a d flip-flop, calling for 3 d flip-flops.

With this Mealy design, only 8 states are needed as opposed to 32 needed for an equivalent

Moore machine. Additionally, the sequence does not start over if the input is changed mid-cycle,

but rather it picks up at the same index of the new sequence. The behavior of the circuit is a 3-bit

synchronous counter (counting from state to state) that outputs different values depending on the

current state and input. All changes occur on rising clock edges.

Figure 3: State transition diagram and state assignments

Figure 3 above displays the state transition table created from the state transition diagram. Each

So 5

row tells what the current state is, and the 4 possible inputs it can receive, the outputs that would

results from those inputs, and the next state (independent of input). At the bottom is the

annotated state assignment: state 1 becomes D2D1D0 = 000, state 2 becomes D2D1D0 = 001

etc…. This same convention holds for the next state logic: next state 1 becomes D2
+D1

+D0
+ =

000, next state 2 becomes D2
+D1

+D0
+ = 001, etc…. Replacing the state values with these, the

state transition table becomes a full truth table with inputs D2, D1, D0, A, and B and outputs Z,

D2
+, D1

+, and D0
+. The logic required for the D2

+, D1
+, and D0

+ outputs will determine the inputs

into the flip-flops. The upcoming Figures 4a-c and Figure 5 will minimize this logic.

Figure 4a: K-map logic derivation and minimization for D0
+

Figure 4a above shows that the logic expression for D0
+ requires one NOT gate.

Figure 4b: K-map logic derivation and minimization for D1
+

Figure 4b above shows that the logic expression for D1
+ requires one XOR gate.

Figure 4c: K-map logic derivation and minimization for D2
+

Figure 4c above shows that the logic expression for D2
+ requires two NOT gates, five 2-input

AND gates, and one OR gate.

So 6

Figure 5: K-map logic derivation and minimization for Z

Figure 5 above shows that the logic expression for Z would need one NOT gate, seventeen 2-

input AND gates, and six OR gates. Because this is so many gates, instead of just logic gates, an

8:1 MUX will be used with D2D1D0 as the select lines and combinations of A and B (A, AB,

A+B, 0, and 1) for the input lines. This will drastically reduce the number of gates needed,

reducing final count to one 8:1 MUX, one AND gate, and one OR gate.

Figure 6: Gates and components list

Component Quantity Chips needed Part Code

8:1 MUX 1 1 (1/chip) 74151

2input AND 6 2 (3/chip) 7408

2input OR 3 1 (3/chip) 7432

2input XOR 1 1 (3/chip) 7486

D flip flop 3 2 (2/chip) 7474

Timer 1 1 (1/chip) 555 timer

This is the final parts list for our proposed circuit. Note that the inverters are not included in the

list, because the 7474 d flip-flop package contains an inverted output with each flip-flop.

Conclusion:

The initial design and planning of the finite state machine and circuit are complete. All

results were as expected this was an exercise in methods learned in 0132 Digital Logic

course. The Mealy design, state transition state assignments and table, and K-mapping

allowed for the minimization of this solution to the circuit. The following parts will

simulate, build, and test this solution.

So 7

Part II: Quartus II Simulation

Purpose:

The purpose of part 2 was to digitally make the finite state machine designed in part 1

and simulate it using the waveform generator using Quartus II software to see if the

design worked as intended.

Procedure:

1. The logic expressions found in Figures 4a-c and Figure 5 were converted into a

schematic, utilizing two 7474 d flip-flop chips and one 74151 8:1 MUX chip. Chip

packages for the gates were not used to ensure the correct logic was being used.

2. External Preset and Clear on the flip-flop were added and set to HIGH, because they are

true-low inputs. This enable the system to initialize from a natural state.

3. Inputs A, B, and Clock, outputs D2, D1, D0, and Z were added to the schematic in addition

to the chips and gates to finish the schematic. See Figure 7 for the final schematic.

4. The Waveform editor function of Quartus II was used to generate a timing diagram. All

inputs were tested and each successfully output the correct sequence. See Figure 8 in the

results section for the waveform

Results:

Figure 7: Finite state machine circuit final schematic

Figure 7 above shows the schematic for the finite state machine designed in part 1, designed

using Quartus II software. For the purpose of viewing in the waveform editor, preset (PRST),

clock (CLK), clear (CLR), A, and B are set to inputs, while flip-flop outputs D2 D1 D0 and output

Z were set to outputs.

Z

CLR

RL

R

CLK

PRST

D0
D1

D2 B A

Seth So and Martin Klena

So 8

Going from left to right: the flip-flops are initialized and set up to run synchronously, as they all

use the same clock signal. Preset and clear are set to HIGH as they are true-low inputs. The

outputs of the flip-flops go through several levels of gates to create the next state logic

expressions found in Figures 4a-c and Figure 5. Lines from D2 D1 D0 become the select lines of

the multiplexer, which also takes in combinations of inputs A and B, finally outputting Z.

Figure 8: Complete waveform and timing diagram of inputs and outputs of schematic

Figure 8 above displays the timing diagram generated from simulating the digital schematic with

the inputs set as mentioned above. Working down the list of waveforms: preset (named reset on

the dagram) and clear are set to HIGH for the duration of the simulation as explained before.

Clock is set to a 50ns period, each combination of A and B (00, 01, 10, and 11) last a full eight

clock cycles so that the entire output sequence may be seen in output Z. D2 D1 D0 at the bottom

act as the state counter, and work as described in Laboratory 9.

Important relations to note: the period of A lasts twice as long as B, which lasts twice as long as

D2, which lasts twice as long as D1, which lasts twice as long as D0, which lasts twice a long as

CLK. This way, all combinations are tested to ensure that the circuit outputs the correct

sequence, which it does. All changes occur on the rising edge of the clock. Figure 1, reproduced

here, matches the behavior, and confirms that Z’s behavior is outputting the correct sequence:

Figure 1: Required inputs and outputs of the finite state machine

Conclusion:

Building and simulation of the design through Quartus II software confirmed that the

circuit will work when implemented. All results were as expected, though this procedure

took over an hour to complete. The individual gates were meant to ensure that the correct

next state logic expressions were being connected, but it may have been easier to instead

implement the chips directly into the schematic. This would also greatly simplify

building the actual circuit

AB (Input) Z (Output Sequence)

00 0000000100000001…

01 0000011100000111…

10 0001111100011111…

11 0111111101111111…

So 9

Part III: Proto-Board Realization

Purpose:

The purpose of part 3 was to convert the digital schematic into a physical circuit utilizing

the different integrated circuit chips in the lab kits. After completion, simulated results

for the correct waveforms obtained in part 2 would be tested by checking the outputs of

the realized circuit on the oscilloscope to confirm that the circuit was built correctly.

Procedure:

1. The main circuit was constructed according to the schematic, replacing all single logic

gates with their respective IC chips. Preset and set were tied to HIGH voltage first,

followed by the rest of the connections progressing through the circuit as a signal would.

No LEDs were used, as outputs would be observed with the oscilloscope.

2. The 555 timer was then added to provide the clock signal. The 50ns period set in the

simulation proved infeasible due to inability to make it with standard parts, so it was set

to 100µs (C = 2nF, R1 = 5.1kΩ, and R2 = 4.7kΩ). See reference section for 555 timer

circuit.

3. Inverted logic sources for A and B were built using SPDT switches along with 1kΩ

resistors to prevent direct shorts to ground. These would enable for fast toggling and

testing of A and B combination inputs.

4. After the entire circuit was completed, the different outputs and inputs labelled in Figure

7 were observed on the oscilloscope. Despite the different clock period, the pattern of the

waveforms exactly matched those in found in the simulation, confirming that the circuit

was built correctly. See Figure 9a-d for the Z outputs compared with CLK.

Results:

Figure 9a: oscilloscope observation of output Z (yellow) for AB = 00 and CLK (cyan)

So 10

Seen in Figure 9a (previous page), the output for Z is as expected. There is a ratio of 1 output

HIGH for every 8 CLK cycles, indicating that Z is outputting 0000000100000001… for input

AB = 00, which is correct according to Figure 1.

Figure 9b: oscilloscope observation of output Z (yellow) for AB = 01 and CLK (cyan)

Seen above in Figure 9b, the output for Z is as expected. There is a ratio of 3 output HIGHs for

every 8 CLK cycles, indicating that Z is outputting 0000011100000111… for input AB = 01,

which is correct according to Figure 1.

Figure 9c: oscilloscope observation of output Z (yellow) for AB = 10 and CLK (cyan)

Seen above in Figure 9c, the output for Z is as expected. There is a ratio of 5 output HIGHs for

every 8 CLK cycles, indicating that Z is outputting 0001111100011111… for input AB = 10,

which is correct according to Figure 1.

So 11

Figure 9d: oscilloscope observation of output Z (yellow) for AB = 11 and CLK (cyan)

Seen above in Figure 9d, the output for Z is as expected. There is a ratio of 7 output HIGHs for

every 8 CLK cycles, indicating that Z is outputting 01111111101111111… for input AB = 11,

which is correct according to Figure 1.

Conclusion:

The oscilloscope observations confirmed that the circuit was functioning correctly. The

circuit took over 3 hours to complete as the schematic did not contain the logic gate IC

chips, making a direct transfer surprisingly difficult. Additionally, the timer period had to

be changed to a value that was able to be made with standard value resistors and

capacitors, but also was large enough that it could be observed accurately on the

oscilloscope. These design considerations will be considered on the next Laboratory.

Another final note is that though the 555 timer was emitting a stable signal, there appears

to be some bouncing affect at the output. The cause is unknown, but it will be

investigated at a later time.

Part IV: Logic Analyzer

Purpose:

The purpose of part 4 was to compare manual oscilloscope measurements to digital

measurements (taken with the Intronic Logic Port Logic Analyzer). Whereas the digital

oscilloscope has a course resolution, limited display, and simple triggering, the Logic

Port Logic Analyzer has much finer resolution (nanoseconds compared to 10’s of

nanoseconds), can display many more channels (40 compared to 3), and has more

complex triggering methods (much less susceptible to noise).

So 12

Procedure:

1. No LEDs were added to the circuit, so the probes were connected directly to the circuit

according to the table in Figure 10:

Figure 10: Logic Analyzer to Circuit board mapping

Signal Color Logic Analyzer Circuit Board

Purple CLK1 Timer output

Not displayed GRN Ground

Red D0 A

Yellow D1 B

Cyan D3 Z

Green D2 D0

Green D4 D1

Green D5 D2

Note that D2 and D3 are out of order. This is deliberate and reflected in Figures 11a-d

that display the waveform timing diagrams of these signals.

2. The trigger pattern was set to trigger once on the rising edge of the A. However, since A

had no rising edge (always set to HIGH or LOW), the trigger was set off immediately.

The trigger pattern should have been set to trigger once on the rising edge of the clock

signal. That way, it would consistently line up with the a cycle, since the circuit is

synchronous.

3. Sample rate was set to 200MHz to enable nanosecond precision (sample every 5 ns) and

logic threshold to 1.4V to filter out any circuit noise. The trigger was then run so that

images could be generated. Figures 11a-d show these results. See Figure 10 for the

coding.

Results:

Figure 11a: Logic Analyzer analysis of circuit for AB = 00

Seen in Figure 11a above, D2D1D0 counts from 0-7, and the corresponding Z output is 00000001

as expected. All changes occur very neatly on the rising clock edge. Z is only HIGH for the final

clock cycle in groups of 8, occurring when D2D1D0 = 111.

So 13

Figure 11b: Logic Analyzer analysis of circuit for AB = 01

Seen in Figure 11b above, D2D1D0 counts from 0-7, and the corresponding Z output is 00000111

as expected. There is an odd instant when Z is HIGH that it drops LOW, but only for an instant.

It is unknown if this is a bug or the HIGH signal dips below the 1.4V logic threshold because of

a large spike in noise for an incredibly brief timeframe. Z is HIGH for the final 3 of 8 clock

cycles.

Figure 11c: Logic Analyzer analysis of circuit for AB = 10

Seen in Figure 11c above, D2D1D0 counts from 0-7, and the corresponding Z output is 00011111

as expected. The strange LOWs in Z occur again, but all else is as it should be. Z is HIGH for the

final 5 of 8 clock cycles

Figure 11d: Logic Analyzer analysis of circuit for AB = 11

Seen in Figure 11d above, D2D1D0 counts from 0-7, and the corresponding Z output is 01111111

as expected. This is the longest Z where Z is HIGH for 7 of 8 clock cycles.

So 14

Conclusion:

The Logic Analyzer is a fantastic way to observe the input and output signals of logic

circuits. Its improved triggering helps filter out much of the noise observed on the digital

oscilloscope, and it can observe 13x as many channels as the oscilloscope can

simultaneously. It would be very useful in debugging a circuit, as it can provide clean

displays rapidly through very easy connections.

With regard to the laboratory, the Logic Analyzer matched both the simulated as well as

the observed results, confirming that our circuit functioned as designed.

Summary:

The goal of Laboratory 10 was to design a synchronous, sequential circuit by planning out the

finite state machine, simulating it in Altera Quartus II, building it on the proto-boards, observing

it with the oscilloscope, and finally analyzing it through the specialized peripheral LogicPort.

Important design considerations arose including whether it was possible to build around

parameters set in simulations (i.e. the timer period), whether to use logic gates in the schematic

for clarity or the final components for practicality (lesson learned to use the final components),

an, in summary, how to go about constructing a finite state machine from start to finish.

The application of the circuit is that it simulates pulse width modulation, which can be used to

alter duty cycle (vary the fraction for which a signal is active). Pulse width modulation also has a

myriad of other uses, primarily in using digital signals to represent analog signals.

References:

555 timer datasheet: https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464842_2/courses/2184_UPITT_ECE_0501_SEC1010/555_timer.jpg

7474 datasheet: https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464850_2/courses/2184_UPITT_ECE_0501_SEC1010/7474.pdf

7408 datasheet : https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf

7432 datasheet : https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf

7486 datasheet : https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464851_2/courses/2184_UPITT_ECE_0501_SEC1010/7486.pdf

74151 datasheet: https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464845_2/courses/2184_UPITT_ECE_0501_SEC1010/74HC_HCT151_CNV_2.pdf

https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464842_2/courses/2184_UPITT_ECE_0501_SEC1010/555_timer.jpg
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464842_2/courses/2184_UPITT_ECE_0501_SEC1010/555_timer.jpg
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464850_2/courses/2184_UPITT_ECE_0501_SEC1010/7474.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464850_2/courses/2184_UPITT_ECE_0501_SEC1010/7474.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464851_2/courses/2184_UPITT_ECE_0501_SEC1010/7486.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464851_2/courses/2184_UPITT_ECE_0501_SEC1010/7486.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%0923464845_2/courses/2184_UPITT_ECE_0501_SEC1010/74HC_HCT151_CNV_2.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%0923464845_2/courses/2184_UPITT_ECE_0501_SEC1010/74HC_HCT151_CNV_2.pdf

