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Introduction: 

 
This laboratory was a set of four procedures to design, simulate, implement, and test a finite state 

machine for a synchronous, sequential circuit. The circuit must have two single-bit inputs A and 

B, and a single-bit output Z. Z will output a repeating sequence of digits based on the inputs A 

and B according to Figure 1 below: 

 

Figure 1: Required inputs and outputs of the finite state machine 

 

 

 

 

 

 

 
Z should sequentially progress to the next bit in each sequence (shown in Figure 1) with each 

rising clock edge and loop back at the beginning. This clock edge must be set by a 555-timer 

circuit, which acts as the main clock according to which the rest of the circuit must act. This is 

what makes the timing synchronous and independent of different outputs throughout the circuit. 

The circuit must also use 7474 D flip-flops to store the states, and the number of logic gates and 

ICs needed should be minimized if possible. 

 

The following report details the procedure followed and results obtained while making the 

circuit. 

 

Part I: Finite State Machine 

 

Purpose: 

The purpose of part 1 was to review synchronous design techniques to use in designing a 

finite state machine that satisfied the criteria listed in the Introduction. Methods from the 

0132 Digital Logic course (i.e. K-map, state transition diagram, state assignment, and 

state transition table) were followed to design and optimize the logic of the circuit. 

 

Procedure:  

1. The first step in designing the finite state machine was choosing to make a Moore or 

Mealy machine. Moore machines are state-defined (output is tied to the state). They are 

simpler in concept, they but can become more complex than Mealy machines when many 

states are required. The output of Mealy machines is determined by current state as well 

as input, which helps to cut down on the total number of states needed. Therefore, a 

Mealy machine design was chosen since it would only require 8 states compared to 32 

states needed by a Moore machine. 

 

2. Using the Mealy design, a state transition diagram was created that would output the 

proper sequence for each combination of inputs (see Figure 1). Because there are 8 bits in 

each sequence, the design will have 8 states. Each clock cycle will move the current state 

AB (Input) Z (Output Sequence) 

00 0000000100000001… 

01 0000011100000111… 

10 0001111100011111… 

11 0111111101111111… 
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to the next state and output a bit of the sequence based off the inputs. See Figure 2 in the 

results section for the diagram. 

 

3. Next a state transition table was made from the state transition diagram. It shows current 

state, possible inputs (A and B), and the output (Z) and next state associated with each 

input. Additionally, the states were assigned 3-bit binary numbers (Current state = D2 D1 

D0 and Next state = D2
+ D1

+ D0
+). This would allow for the derivation of the logic 

expressions using K-maps. The complete table is shown in Figure 3 in the results section. 

 

4. K-maps were then used on the transition table to find the minimized next state logic for 

next state bits D2
+, D1

+, and D0
+ in terms of current state bits D2, D1, and D0. The input 

bits were not required, because the machine was designed so that the current state would 

move onto the next state every clock edge regardless of the input. The results for each of 

these are documented in Figure 4 a-c in the results section.   

 

5. K-maps were used to find the output bit Z. Here, Z was dependent on both current state 

and input, so a slightly more complicated five-variable K-map had to be computed to 

obtain the minimized output logic. The result of this K-map is displayed in Figure 5 

below in the results section. 

 

6. From the final expressions for next state logic and output logic, the total number of gates 

and physical components needed for implementation was determined. The list is 

compiled in the table in Figure 6. 

 

Results: 

Figure 2: Finite state transition diagram (Mealy design) 

 

 
 

Figure 2 above displays the state transition diagram for the proposed finite machine design. 

There are 8 states, 1-8, for each of the 8 bits in the output sequence. This also corresponds to 8 

clock cycles, as each state moves to the next on the rising edge of every clock cycle. The 

diagram follows normal Mealy machine convention – the arrows indicate the which state comes 
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next, and above each arrow is the output for given input ( 
𝐼𝑛𝑝𝑢𝑡𝑠

𝑂𝑢𝑡𝑝𝑢𝑡
=

𝐴𝐵

𝑍
 ). The output is dependent 

on current state and inputs, but next state is only dependent on current state. After reaching state 

8 ( D2D1D0 = 111 ), the system will always output a 0 and loop back to state 1 on the next clock 

cycle. Because the 8 states are counted in binary, there are 3 state bits D2, D1, and D0. Each of 

these state bits will be realized with a d flip-flop, calling for 3 d flip-flops. 

 

With this Mealy design, only 8 states are needed as opposed to 32 needed for an equivalent 

Moore machine. Additionally, the sequence does not start over if the input is changed mid-cycle, 

but rather it picks up at the same index of the new sequence. The behavior of the circuit is a 3-bit 

synchronous counter (counting from state to state) that outputs different values depending on the 

current state and input. All changes occur on rising clock edges. 

 

Figure 3: State transition diagram and state assignments 

 

 
 

 

Figure 3 above displays the state transition table created from the state transition diagram. Each  
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row tells what the current state is, and the 4 possible inputs it can receive, the outputs that would 

results from those inputs, and the next state (independent of input). At the bottom is the 

annotated state assignment: state 1 becomes D2D1D0 = 000, state 2 becomes D2D1D0 = 001 

etc…. This same convention holds for the next state logic: next state 1 becomes D2
+D1

+D0
+ = 

000, next state 2 becomes D2
+D1

+D0
+ = 001, etc…. Replacing the state values with these, the 

state transition table becomes a full truth table with inputs D2, D1, D0, A, and B and outputs Z, 

D2
+, D1

+, and D0
+. The logic required for the D2

+, D1
+, and D0

+  outputs will determine the inputs 

into the flip-flops. The upcoming Figures 4a-c and Figure 5 will minimize this logic. 

 

Figure 4a: K-map logic derivation and minimization for D0
+ 

 

 
 

Figure 4a above shows that the logic expression for D0
+ requires one NOT gate. 

 

Figure 4b: K-map logic derivation and minimization for D1
+ 

 

 
 

Figure 4b above shows that the logic expression for D1
+ requires one XOR gate. 

 

Figure 4c: K-map logic derivation and minimization for D2
+ 

 

 
 

Figure 4c above shows that the logic expression for D2
+ requires two NOT gates, five 2-input 

AND gates, and one OR gate. 
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Figure 5: K-map logic derivation and minimization for Z 

 

 
 

Figure 5 above shows that the logic expression for Z would need one NOT gate, seventeen 2-

input AND gates, and six OR gates. Because this is so many gates, instead of just logic gates, an 

8:1 MUX will be used with D2D1D0 as the select lines and combinations of A and B (A, AB, 

A+B, 0, and 1) for the input lines. This will drastically reduce the number of gates needed, 

reducing final count to one 8:1 MUX, one AND gate, and one OR gate. 

 

Figure 6: Gates and components list 

 

Component Quantity Chips needed Part Code 

8:1 MUX 1 1      (1/chip) 74151 

2input AND 6 2      (3/chip) 7408 

2input OR 3 1      (3/chip) 7432 

2input XOR 1 1      (3/chip) 7486 

D flip flop 3 2      (2/chip) 7474 

Timer 1 1      (1/chip) 555 timer 

  

This is the final parts list for our proposed circuit. Note that the inverters are not included in the 

list, because the 7474 d flip-flop package contains an inverted output with each flip-flop. 

 

Conclusion:  

The initial design and planning of the finite state machine and circuit are complete. All 

results were as expected this was an exercise in methods learned in 0132 Digital Logic 

course. The Mealy design, state transition state assignments and table, and K-mapping 

allowed for the minimization of this solution to the circuit. The following parts will 

simulate, build, and test this solution. 
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Part II: Quartus II Simulation 

 

Purpose:  

The purpose of part 2 was to digitally make the finite state machine designed in part 1 

and simulate it using the waveform generator using Quartus II software to see if the 

design worked as intended. 

 

Procedure:  

1. The logic expressions found in Figures 4a-c and Figure 5 were converted into a 

schematic, utilizing two 7474 d flip-flop chips and one 74151 8:1 MUX chip. Chip 

packages for the gates were not used to ensure the correct logic was being used. 

 

2. External Preset and Clear on the flip-flop were added and set to HIGH, because they are 

true-low inputs. This enable the system to initialize from a natural state.  

 

3. Inputs A, B, and Clock, outputs D2, D1, D0, and Z were added to the schematic in addition 

to the chips and gates to finish the schematic. See Figure 7 for the final schematic.  

 

4. The Waveform editor function of Quartus II was used to generate a timing diagram. All 

inputs were tested and  each successfully output the correct sequence. See Figure 8 in the 

results section for the waveform 

 

Results: 

Figure 7: Finite state machine circuit final schematic 

 

 

Figure 7 above shows the schematic for the finite state machine designed in part 1, designed 

using Quartus II software. For the purpose of viewing in the waveform editor, preset (PRST), 

clock (CLK), clear (CLR), A, and B are set to inputs, while flip-flop outputs D2 D1 D0 and output 

Z were set to outputs. 

 

Z 

CLR

RL

R 

CLK 

PRST 

D0 
D1 

D2 B A 

Seth So and Martin Klena 



So 8 
 

Going from left to right: the flip-flops are initialized and set up to run synchronously, as they all 

use the same clock signal. Preset and clear are set to HIGH as they are true-low inputs. The 

outputs of the flip-flops go through several levels of gates to create the next state logic 

expressions found in Figures 4a-c and Figure 5. Lines from D2 D1 D0 become the select lines of 

the multiplexer, which also takes in combinations of inputs A and B, finally outputting Z.  

   

Figure 8: Complete waveform and timing diagram of inputs and outputs of schematic 

 

 

Figure 8 above displays the timing diagram generated from simulating the digital schematic with 

the inputs set as mentioned above. Working down the list of waveforms: preset (named reset on 

the dagram) and clear are set to HIGH for the duration of the simulation as explained before. 

Clock is set to a 50ns period, each combination of A and B (00, 01, 10, and 11) last a full eight 

clock cycles so that the entire output sequence may be seen in output Z. D2 D1 D0 at the bottom 

act as the state counter, and work as described in Laboratory 9. 

 

Important relations to note: the period of A lasts twice as long as B, which lasts twice as long as 

D2, which lasts twice as long as D1, which lasts twice as long as D0, which lasts twice a long as 

CLK. This way, all combinations are tested to ensure that the circuit outputs the correct 

sequence, which it does. All changes occur on the rising edge of the clock. Figure 1, reproduced 

here, matches the behavior, and confirms that Z’s behavior is outputting the correct sequence: 

 

Figure 1: Required inputs and outputs of the finite state machine 

 

 

 

 

 

 

 

Conclusion:  

Building and simulation of the design through Quartus II software confirmed that the 

circuit will work when implemented.  All results were as expected, though this procedure 

took over an hour to complete. The individual gates were meant to ensure that the correct 

next state logic expressions were being connected, but it may have been easier to instead 

implement the chips directly into the schematic. This would also greatly simplify 

building the actual circuit 

AB (Input) Z (Output Sequence) 

00 0000000100000001… 

01 0000011100000111… 

10 0001111100011111… 

11 0111111101111111… 
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Part III: Proto-Board Realization 

 

Purpose:  

The purpose of part 3 was to convert the digital schematic into a physical circuit utilizing 

the different integrated circuit chips in the lab kits. After completion, simulated results 

for the correct waveforms obtained in part 2 would be tested by checking the outputs of 

the realized circuit on the oscilloscope to confirm that the circuit was built correctly. 

 

Procedure:  

1. The main circuit was constructed according to the schematic, replacing all single logic 

gates with their respective IC chips. Preset and set were tied to HIGH voltage first, 

followed by the rest of the connections progressing through the circuit as a signal would. 

No LEDs were used, as outputs would be observed with the oscilloscope. 

 

2. The 555 timer was then added to provide the clock signal. The 50ns period set in the 

simulation proved infeasible due to inability to make it with standard parts, so it was set 

to 100µs (C = 2nF, R1 = 5.1kΩ, and R2 = 4.7kΩ). See reference section for 555 timer 

circuit. 

 

3. Inverted logic sources for A and B were built using SPDT switches along with 1kΩ 

resistors to prevent direct shorts to ground. These would enable for fast toggling and 

testing of A and B combination inputs.  

 

4. After the entire circuit was completed, the different outputs and inputs labelled in Figure 

7 were observed on the oscilloscope. Despite the different clock period, the pattern of the 

waveforms exactly matched those in found in the simulation, confirming that the circuit 

was built correctly. See Figure 9a-d for the Z outputs compared with CLK. 

 

Results: 

Figure 9a: oscilloscope observation of output Z (yellow) for AB = 00 and CLK (cyan) 
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Seen in Figure 9a (previous page), the output for Z is as expected. There is a ratio of 1 output 

HIGH for every 8 CLK cycles, indicating that Z is outputting 0000000100000001… for input 

AB = 00, which is correct according to Figure 1. 

 

Figure 9b: oscilloscope observation of output Z (yellow) for AB = 01 and CLK (cyan) 

 

 
 

Seen above in Figure 9b, the output for Z is as expected. There is a ratio of 3 output HIGHs for  

every 8 CLK cycles, indicating that Z is outputting 0000011100000111… for input AB = 01, 

which is correct according to Figure 1. 

 

Figure 9c: oscilloscope observation of output Z (yellow) for AB = 10 and CLK (cyan) 

 

 
 

Seen above in Figure 9c, the output for Z is as expected. There is a ratio of 5 output HIGHs for  

every 8 CLK cycles, indicating that Z is outputting 0001111100011111… for input AB = 10, 

which is correct according to Figure 1. 

 

 

 

 



So 11 
 

 

 

 

Figure 9d: oscilloscope observation of output Z (yellow) for AB = 11 and CLK (cyan) 

 

 
 

Seen above in Figure 9d, the output for Z is as expected. There is a ratio of 7 output HIGHs for  

every 8 CLK cycles, indicating that Z is outputting 01111111101111111… for input AB = 11, 

which is correct according to Figure 1. 

 

Conclusion:  

The oscilloscope observations confirmed that the circuit was functioning correctly. The 

circuit took over 3 hours to complete as the schematic did not contain the logic gate IC 

chips, making a direct transfer surprisingly difficult. Additionally, the timer period had to 

be changed to a value that was able to be made with standard value resistors and 

capacitors, but also was large enough that it could be observed accurately on the 

oscilloscope. These design considerations will be considered on the next Laboratory. 

Another final note is that though the 555 timer was emitting a stable signal, there appears 

to be some bouncing affect at the output. The cause is unknown, but it will be 

investigated at a later time. 

 

Part IV: Logic Analyzer 

 

Purpose:  

The purpose of part 4 was to compare manual oscilloscope measurements to digital 

measurements (taken with the Intronic Logic Port Logic Analyzer). Whereas the digital 

oscilloscope has a course resolution, limited display, and simple triggering, the Logic 

Port Logic Analyzer has much finer resolution (nanoseconds compared to 10’s of 

nanoseconds), can display many more channels (40 compared to 3), and has more 

complex triggering methods (much less susceptible to noise).  
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Procedure: 

1. No LEDs were added to the circuit, so the probes were connected directly to the circuit 

according to the table in Figure 10:  

 

Figure 10: Logic Analyzer to Circuit board mapping 

 

Signal Color Logic Analyzer Circuit Board 

Purple CLK1 Timer output 

Not displayed GRN Ground 

Red D0 A 

Yellow D1 B 

Cyan D3 Z 

Green D2 D0 

Green D4 D1 

Green D5 D2 

 

Note that D2 and D3 are out of order. This is deliberate and reflected in Figures 11a-d 

that display the waveform timing diagrams of these signals. 

 

2. The trigger pattern was set to trigger once on the rising edge of the A. However, since A 

had no rising edge (always set to HIGH or LOW), the trigger was set off immediately. 

The trigger pattern should have been set to trigger once on the rising edge of the clock 

signal. That way, it would consistently line up with the a cycle, since the circuit is 

synchronous. 

 

3. Sample rate was set to 200MHz to enable nanosecond precision (sample every 5 ns) and 

logic threshold to 1.4V to filter out any circuit noise. The trigger was then run so that 

images could be generated. Figures 11a-d show these results. See Figure 10 for the 

coding. 

 

Results: 

Figure 11a: Logic Analyzer analysis of circuit for AB = 00 

 

 
 

Seen in Figure 11a above, D2D1D0 counts from 0-7, and the corresponding Z output is 00000001 

as expected. All changes occur very neatly on the rising clock edge. Z is only HIGH for the final 

clock cycle in groups of 8, occurring when D2D1D0 = 111. 
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Figure 11b: Logic Analyzer analysis of circuit for AB = 01 

 

 
 

Seen in Figure 11b above, D2D1D0 counts from 0-7, and the corresponding Z output is 00000111 

as expected. There is an odd instant when Z is HIGH that it drops LOW, but only for an instant. 

It is unknown if this is a bug or the HIGH signal dips below the 1.4V logic threshold because of 

a large spike in noise for an incredibly brief timeframe. Z is HIGH for the final 3 of 8 clock 

cycles. 

 

Figure 11c: Logic Analyzer analysis of circuit for AB = 10 

 

 
 

Seen in Figure 11c above, D2D1D0 counts from 0-7, and the corresponding Z output is 00011111 

as expected. The strange LOWs in Z occur again, but all else is as it should be. Z is HIGH for the 

final 5 of 8 clock cycles 

 

Figure 11d: Logic Analyzer analysis of circuit for AB = 11 

 

 
 

Seen in Figure 11d above, D2D1D0 counts from 0-7, and the corresponding Z output is 01111111 

as expected. This is the longest Z where Z is HIGH for 7 of 8 clock cycles.  
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Conclusion: 

The Logic Analyzer is a fantastic way to observe the input and output signals of logic 

circuits. Its improved triggering helps filter out much of the noise observed on the digital 

oscilloscope, and it can observe 13x as many channels as the oscilloscope can 

simultaneously. It would be very useful in debugging a circuit, as it can provide clean 

displays rapidly through very easy connections.  

 

With regard to the laboratory, the Logic Analyzer matched both the simulated as well as 

the observed results, confirming that our circuit functioned as designed. 

 

Summary: 

 

The goal of Laboratory 10 was to design a synchronous, sequential circuit by planning out the 

finite state machine, simulating it in Altera Quartus II, building it on the proto-boards, observing 

it with the oscilloscope, and finally analyzing it through the specialized peripheral LogicPort. 

 

Important design considerations arose including whether it was possible to build around 

parameters set in simulations (i.e. the timer period), whether to use logic gates in the schematic 

for clarity or the final components for practicality (lesson learned to use the final components), 

an, in summary, how to go about constructing a finite state machine from start to finish. 

 

The application of the circuit is that it simulates pulse width modulation, which can be used to 

alter duty cycle (vary the fraction for which a signal is active). Pulse width modulation also has a 

myriad of other uses, primarily in using digital signals to represent analog signals. 

 

References: 

 

555 timer datasheet: https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-  

           23464842_2/courses/2184_UPITT_ECE_0501_SEC1010/555_timer.jpg 

 

7474 datasheet:        https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-  

           23464850_2/courses/2184_UPITT_ECE_0501_SEC1010/7474.pdf 

 

7408 datasheet :        https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-  

           23464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf 

 

7432 datasheet :        https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-  

           23464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf 

 

7486 datasheet :        https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-  

           23464851_2/courses/2184_UPITT_ECE_0501_SEC1010/7486.pdf 

74151 datasheet:      https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-

 23464845_2/courses/2184_UPITT_ECE_0501_SEC1010/74HC_HCT151_CNV_2.pdf 

 

https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464842_2/courses/2184_UPITT_ECE_0501_SEC1010/555_timer.jpg
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464842_2/courses/2184_UPITT_ECE_0501_SEC1010/555_timer.jpg
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464850_2/courses/2184_UPITT_ECE_0501_SEC1010/7474.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464850_2/courses/2184_UPITT_ECE_0501_SEC1010/7474.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464848_2/courses/2184_UPITT_ECE_0501_SEC1010/7408.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464851_2/courses/2184_UPITT_ECE_0501_SEC1010/7486.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%09%09%09%09%20%20%20%20%20%20%20%20%2023464851_2/courses/2184_UPITT_ECE_0501_SEC1010/7486.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%0923464845_2/courses/2184_UPITT_ECE_0501_SEC1010/74HC_HCT151_CNV_2.pdf
https://courseweb.pitt.edu/bbcswebdav/pid-24291878-dt-content-rid-%0923464845_2/courses/2184_UPITT_ECE_0501_SEC1010/74HC_HCT151_CNV_2.pdf

