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Introduction:

The Field Programmable Gate Array (FPGA), is an integrated circuit chip that can be
programmed to implement entire circuits by itself. The FPGA board is an Altera peripheral that
compiled schematics can be downloaded to for implementation after pin assignments. In addition
to Quartus schematics, the FPGA can also read VHDL (VHSIC [Very High Speed Integrated
Circuit] Hardware Description Language) code.

Figure 1: Altera DE2 FPGA Board
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Figure 1 above shows the board that will be used. It features many different 1/0 ports for high
general compatibility, peripheral compatibility for other circuit boards (e.g. Arduino), an
onboard LCD display, eight 7-segment LED displays, 19 red/green LEDs, 17 switches, and four
push buttons.

In Laboratory 13, the 4-bit ALU made in the previous lab was implemented on the FPGA, rather
than the protoboard, using the schematic made before. Various schematic components were
sequentially replaced with self-written VHDL-coded components to demonstrate the boards
VHDL compatibility.

Part I: Quartus Il Circuit Design

Purpose:
The purpose of part 1 was to repurpose the ALU schematic designed in the previous lab
for programming onto the FPGA.

Procedure:
1. The first step to repurpose the schematic was altering the components. The 4-bit latch
made from D flip-flops was replaced with a new design, which utilized four individual
“latch” components in one symbol file. Figure 2 below in the results section shows this
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schematic. Afterwards, the old 7-segment decoders were removed from the schematic.
The file DispBin.vhd was also added for the VHDL coding later.

2. The setting and parameters of the circuit were altered so that the schematic could be
downloaded successfully to the FPGA board. Specifically, the device family was set to
Cyclone 11, the specific device was set to EP2C35F672C6, the optimization technique
was set to AREA, and the global clock was deselected. The schematic was compiled with

these new settings.

Results:

Figure 2: New Latch Design
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Figure 2 above shows the new 4-bit latch design. Similar to the D flip-flops, the design uses four
individual latches in tandem with one another, one for each bit, sending a bus of data and enable
input to the latch system. Just as easily, a bus of outputs can be read as a 4-bit output from the

design.

Conclusion:

The settings for schematic from lab 12 were prepared for use on the FPGA board. Next, pin
assignments would be made to replace the deleted 7-segment displays.

Part I1: Pin Assignments for 7 Segment LEDs

Purpose:

The purpose of part 2 was to replace the schematic 7-segment LED displays with the
FPGA onboard 7-segment displays via pin assignment. Doing this introduced the idea of
pin assignment for input/output-pin assignments later in part I11.
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Procedure:
1. Using the Assignment Editor, the outputs of the decoders were assigned to the 7-segment
displays Hex0 and Hex1 on the FPGA board. Figure 3 below in the results section shows
the table used for assignment and the corresponding assignment in Quartus I1.

Results:
Figure 3: Decoder Pin Inputs
Display Segment Pin for Hex1  Pin for Hex0 8 € DatalnA _ :PIN:‘-J?_D
E L DatalnB [PIN_v21
A V20 AF10 10 £ DatalnC [PIN_w21
11 L DataInD PIN_Y22
B M AB12 12 4 DatalnE [PIN_AA24
C W2l ACL? 13 < DatalnF [PIN_AA23
14 4P DataInG [PIN_AB24
D Y22 AD11 15 £ DataOutA [PIN_AF 10
16 L DataOutB [PIN_AB12
E AA24 AE11 17 4P DataOutC [PIN_AC12
18 £ DataOutD PIN_AD11
F AAZ3 V14 19 L DataOutE [PIN_AE 11
G AB2d Vi3 20 L DataOutF [PIN_v14
21 ¥ DataOutG [PIN_V13

Figure 3 above shows the decoder pin assignments. On the left is a list of connections from the
Altera DE-2 board manual (provided in the lab instruction) for Hex0 and Hex1. On the right is
the assignment of the decoder outputs, DataOut (ALU output) and Dataln (Register Read
output).

Conclusion:

The basic procedure and references for pin assignments were taught. All pin locations and
corresponding parts on the FPGA board were found in the Altera DE-2 manual. Importantly, no
pins were double-assigned, and no reserved pins were used.

Part I11: Pin Assignments for Inputs and Outputs

Purpose:
The purpose of part 3 was to decide and assign pin assignments for the rest of the circuit,
using the same process as part 2.

Procedure:
1. Using the Altera DE-2 manual for a full list of pin locations, all the inputs were assigned
to switches on the FPGA board. No push buttons were used, as the button seemed more
prone to input error (i.e. sticky presses and jamming).

2. In addition to the inputs, extra outputs were added to make the circuit more user-friendly.
This included an extra display for the latch output, since it was one of the operands, and
the read and write addresses as red LEDs. Figure 4 below shows the all pin assignments,
and Figure 5 shows the location of all pin assignments on the actual FPGA board:
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Results:
Figure 4: All FPG Board Pin Assignments

To ¢ Location Enabled
i =N PIN_¥2 Yeg
2 I Counter 1Clear PIN_C13 Yes
3 0 Counter 2Clear PIN_M1 Yes
4 B Dataln[i] FIMN_M25 Yes
5 -Dataln[1] PIMN_M26 Yes
& - Dataln[2] PIN_P25 Yes
7 F=Dataln[3] PIN_AE14 Yes
8 £ Datalnd PIN_¥20 Yeg
1] P Datalne PIN_¥21 Yes
10 £ DatalnC PIN_W21 Yes
i1 L DatalnD FIN Y22 Yes
12 ¥ DatalnE PIN_AAZ4 Yes
13 L DatalnF PIN_AAZ3 Yes
14 I Dataln PIN_AB24 Yes
15 I3 DataOuts PIM_AF10 Yes
16 I DataOuts PIN_AB12 Yeg
17 L DataOutc PIN_AC12 Yes
18 L DataOutD FIN_AD11 Yes
L) L DataOute PIN_AE11 Yes
20 L DataOutF PIN_V14 Yes
21 I Dataluti PIM_¥13 Yes
22 P Latchdodk PIN_AF14 Yes
23 I LatchOuth PIN_AB23 Yes
24 I LatchOuts PIN_v22 Yes
25 I LatchOutC PIM_AC25 Yes
26 & LatchOutD PIN_AC26 Yes
27 & L atchOute PIN_AB26 Yes
28 I LatchOutF PIM_AB25 Yes
29 £ LatchOuts PIN_Y24 Yes
30 =M PIN_U4 Yeg
31 = MuxSel PIN_W1 Yes
32 I ReadClock PIN_AD13 Yes
3 ¥ ReadCount[0] PIN_ADZ23 Yes
34 L ReadCount]1] PIN_ADZ21 Yes
35 IF*ReadEnable PIN_AC13 Yes
36 = 5el[0] PIN_P1 Yes
37 E=sel[1] PIN_P2 Yeg
38 F=5el[2] PIN_T7 Yes
39 F=cel[d] PIN_U3 Yes
40 = WriteClock FIN_EB13 Yes
41 & WiriteCount[0] PIMN_AA14 Yes
42 & WiriteCount[1] PIN_Y13 Yes
43 = WriteEnable PIN_A13 Yes

Figure 4 above: All the pin assignments above are shown on the board on the next page in
Figure 5 (see corresponding row number in chart above for labelling key):
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Figure 5: FPG Board Pin Locations
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Figure 5 above shows the inputs (green) and outputs (orange) of the pins on the actual FPGA
board. The organization of the inputs is also displayed underneath the inputs bar. Note that all
numbers refer to the row in Figure 4 for their pin numbers and uses.

Conclusion:

All pins were successfully assigned and organized in a user-friendly manner. This made
operating the FPGA board much easier in the next part, so that functionlity could be tested
quickly and accurately.

Part IV: Programming the FPGA

Purpose:
The purpose of part 4 was to download the schematic and pin assignments to the FPGA
board and begin testing for functionality.

Procedure:

1. After powering the board with a 9-V supply and connecting it to the desktop via a USB-A
cable, the schematic was configured for downloading onto the board by adding the
schematic (as top level entry) .sof file to the “Programmer” window, setting mode to
JTAG, and setting hardware to USB Blaster.

2. Once the code was downloaded, several operations were tested from the previous lab,

now on the board. Slips of paper were added to help demarcate the different switch uses.
Figures 6 and 7 on the following page shows the physical board and outputs.
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Results:

Figure 6: Simple Addition Functionality Test

Figure 6 above shows a simple addition operation to test the boards functionality. “8”s are null
values, so outputs are only being written to the three right-most 7-segment displays. From left to
right, a 5 is latched, a 4 is being read from address 1, and the ALU is adding these two together
to output a 9 because of the A plus B settings (switches 11-17). Reference Figure 5 for what
each specific switch does.

Figure 7: Simple Logic Functionality Test

Figure 7 above shows a simple logic operation to test the boards functionality. Again “8”’s are
null values, so outputs are only being written to the three right-most 7-segment displays. From
left to right, a 5 is latched, a 3 is being read from address 0, and the ALU is ANDing these two
together to output a 1 because of the A AND B settings (switches 11-17). Reference Figure 5 for
what each specific switch does.

Both operations were successful, and other multi-step operations were as well. A multi-number
addition was also tested utilizing the MUX select function to read in the ALU output and was
also successful.
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Conclusion:

All results were as expected. Th Quartus Il schematic and pin assignments were successfully
downloaded to the the FPGA board, which was then able operated correctly with all of the
operations tested, just as the protoboard circuit.

Part V: Recoding Components in VHDL

Purpose:
The purpose of part 5 was to learn introductory VHDL coding to implement self-
designed VHDL parts to replace the pre-made parts in the lab. Functionality was tested
both through waveform simulation and on the FPGA

Procedure:

1. The DispBin.vhd file added earlier to the project was then opened to reveal a full VHDL
code for the 7-segment LED displays that were removed earlier. A symbol file was
created directly from this VHDL code to create a replacement part that was then
connected to the segment decoders, keeping in mind to change inputs and outputs to
busses. After replacement, the schematic was compiled and simulated using the
waveform from the previous lab to test for proper functionality of the VHDL
components. Figure 8 below in the results section shows the output waveform of the
schematic using the 4-operations file used in the previous lab.

2. Once functionality of the single decoder was confirmed, the other two VHDL 7-segment
displays were added. Additionally, the VHDL file itself was edited to display A, b, C, d,
E, and F in addition to 0-9, for full hexadecimal representation. Below, Figure 9 shows
the waveform simulation with no VHDL for reference, Figure 10 shows the edited code,
and Figure 11 shows the output waveform with all three VHDL displays implemented in
the circuit.

3. In the same way as the 7-segment displays, the 4x2:1 MUX, 4-bit Latch, and Counters
were replaced with self-written VHDL code, checking for functionality on both the
FPGA and with the waveform simulator. Figures 12 and 13 show the 4x2:1 MUX VHDL
code and waveform simulation report, Figures 14 and 15 show the 4-bit latch VHDL
code and waveform simulation report, and Figures 16 and 17 show the Counter VHDL
code and waveform simulation report. Finally, Figure 18 shows the entire circuit with all
VHDL components.

(Results begin on next page)
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Results:

Figure 8: Waveform Simulation with added Single VHDL LED Display

ps 800ns 160,0ns 2400ns 3200ns 4000rs 430,0rs 5600ns 6400ns 7200ns 200
Name e ‘ % 7ns i ’ ’ . ' : : : ! !
7ns
0 CourteriClear | AD
o1 Couter2Oear | AD
2 ReadEnable AD
3 M AD
4 N Al
5 Sel us ] 3 iE} i
10 WiiteEnable AT 1 L 1J L L 5] LT LT
11 WrteClock At L M | mn | n 1 n
12 ReadClock AD m_ . -~ "1 1In
13 MucSel AD 1 1
14 Latchclock AD g iy 1 1
15 WiteCount Al | KM [ 4 [£d] M 2 [E] [E] [0] (1] il 2
18 ReadCount AlD) ] T2 i} IR AR [E] O T K I ) I
D21 | E WitsVal AR 12 JHES SR I SO 15h; 6] 1 AUl 6] B
2% LatchOut AlD] 0] ) ¢ 2] 0] )4 E]
31 Dataln uz 7 ] i 3 0 5 z 0 5 3
36 DataOut Al ] } SECHEGID dul) 5L U] EIES SO SO (< OO - SO [ti] ) 04 6] il il
D4 DatalnA AD SRR EEEEEE | | | |
42 DatalnB AD | 1T R )
@43 DatalnC Al I [ N R A A | L[
o4 DatalnD Al | | |
45 DatalnE AD T e T 1 I
@46 Datalnf Al (| - I T T
@47 DatalnG AD H | 1 1 |
D48 LatchOutA AX |
49 LatchOutB AX [
@50 LatchOuiC AX 1
51 LatchOutD AX [ 1
52 LaichOutE AX [
53 LatchOutF AX 1
@54 LatchOuG AX
@55 DataOuth AX 1 oM NN L1 |
56 DataOutB AX SRS R R S I | IR L
@57 DataDutC AX il . L1 | IEEEEEE
@58 DataOutD AX IRy IR IR L LT ] J | JENEEEEEENEEE RN R SRR
@59 DataOutE AX T |14 B
& 60 DataOutF AX N ] L mn .00 7
@60 DataQutG AX mn- I | L LT 1 ] JEEEEE NN e IS EE NN

The waveform in figure 8 above is completely identical to the waveform below in figure 9. This
IS good, because it confirms identical functionality of the VHDL component and old display.

Figure 9: Waveform Simulation for No VHDL Components
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Figure 10: Edited Full Hex Display VHDL Code

11 EENTITY DispBin IS

12 = PORT (

13 D_in: IN BIT_VECTCR(3 DCWNTC O):
14 dp, a, b, ¢, d, &, £, g: OUT BIT

18 END DispBin:

19 EARCHITECTURE dataflow OF DispBin IS
20 SIGNAL dig_sig: BIT_VECTCR(7 DCWNTC 0):

G0 NN RN RN
FOWw®m-0new

39 0000" WHEN D_in
40 101110007

w
o
L1

<= dig_sig(7):
<= dig_sig(6);
<= dig_sig(5):
<= dig_sig(4):
<= dig_sig(3):
<= dig_sig(2):
<= dig_sigi(l):
<= dig_sig(0):

w
o
QHOPROT W

51 END dataflow;

Figure 10 above shows the edited VHDL code for the 7-segment display. Changes were only
made in the “dabcdefg” column of the main, editing the outputted segments for 10-15 to display
their respective hex characters A-F rather than non-standard symbols.

Figure 11: Waveform Simulation for three VHDL LED Displays

ps 800ns 1600ns 2400ns 3200ns 400,0ns 480 0ns 560,0ns 6400 ns 7200ns 800,
nane |53 o7 ‘ : ‘ : ' : : : : :

0 Courtter1Clear A0
Al CourterZClear AOD
2 ReadEnable A0
3 M A0
4 CN Al
&5 Sel us ) 3 i3 T
> 10 WrteEnbl At T U 1] U u ] U u &) U u L
3 WiteClock ao MmN 1n 1 m_n m.n n 00
12 ReadClock AQ 11 FL_n_u M 1n Mm_n
13 HeSel AD 1
14| Latchcock A0 M ! M1

»15 | E WrteCount Am (I ¥ 7l T 7] E] ) IEI (R [} ACO X @

318 | [ ReadCourt | A U] T L) I ZIB@c, T US| il )

»21 | WiiteVal AR (OO 2 SED, [0 SEID GG 45D, 6] LT 5] ) SO

2 | LatchOut Al U X 2 o ) B

3 Dataln U2 3 3 [ 0 3 [] 5 z [ 5 k]

[3% | @ pataout Al 0] 0] 6] ) GEEUIEES(
4 DatalnA AD ] | J
X3 DatalnB AD I
w43 DatalnC Al 1 | I | 1 V_\_ﬂ I
e DatainD A0 ql 1. 7 1 | ]
X3 DatalnE AQ T 1 L 7 L T
46 DatainF Al -ﬁﬁ ’_\_ﬂ
D47 DatainG A0 1 | 1
EX LatchOutA AX |
49 LatchOulB AX [
2 50 LatchOutC AX 1 |
51 LatchOutD AX [ 1
52 LatchOutE. AX [
53 LatchOutF AX 1
5 LatchOuG AX 1
255 DataOuth AX 2 || | .
@56 DatzOutB AX SEESmen BT | T | EEEEEEE ...n
257 DataOuC AX iyl |
EE Dai0uD AX | L ULy | [EEEEEEEEEEE SRR INRREEN
EX Dat2OutE AX T T 1iiiiiid
D60 DateOuF AX L 11 RN S
61 DatautG AX LT L | EREEER)EREEEEE)

Figure 11 above shows the simulation report for all three improved VHDL displays added. All
inputs and outputs are identical to those in Figures 8 and 9, except for display values above 9,
which now display proper hex values A-F. Functionality was confirmed on the FPGA.
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Figure 12: VHDL Code for 4x2:1 MUX

=|E:1tit3-r Mux4 is
—| port (A, B: in kit vector(3 downto 0);

5: in bit;
F: out bit _wector(3 downto 0));

end Mux4;

B architecture Mux4 of Mux4 1is
= component Maxl
port (A,B,5: in bkit; F: out bit);
end component;
begin

o e
TS R N S T R e R . T T SR U WY

MO: Muxl port map(&i0), B(D), 5, F{(0)):
M1l: Muxl port map(a(l), B(l), 5, F{1)):
16 M2: Muxl port map(&i2), B(2), 5, Fi(2)):
17 M3: Muxl port map(&(3), B(3), 5, F(3)):

N -

end Mux4d;

&

Figure 12 above shows the VHDL code for the 4x2:1 MUX. It was created by referencing the
display VHDL code for structure, and the VHDL code for a single 2:1 MUX, which was
imported into the code. The 1x2:1 MUX code was used to extrapolate a 4x2:1 MUX component.

Figure 13: Waveform Simulation with added VHDL 4x2:1 MUX

Ops 800ns 160.0ns 2400ns 3200ns 4000ns 4800ns 560.0ns 640.0ns 7200ns 800,
Name \g”f :s‘ 257ns . ' ' ’ ' ' ' ' ’ '
' ]
0 Counter1Clear A0
o1 Courter2Cear | AD
w2 ReadEnable A0
5] M A0
o4 N Al
o5 Sel us ) 3 i i
10 WriteEnable At U 1T 1] 1T ] [ 1 [} 1S ] ] M}
w11 WriteClock a1 L I | M | M | Il
12 ReadClock AD M n
13 MuxSel AD 1 1 1 1
w14 Latchelock AD M M M M
15 WriteCount Al 0] 0] )4 [Ei] 0] 2 B] ) IE] 10] ] ) SN (T B
[=2E) ReadCount A0 0] ] 2] i} W El] 10 b i} ) SED
=2 WriteVal Al2l ] 121 €] 5] B3] 0] ] 6] [6] 5] 2] U] U] 15] B3]
W% LatchOut Al 1] ¥ 12 (0] ) [l
31 Datal uz 2 ) 0 10 3 i 5 7 T 5 T
5% | [ DateOt Al DI S o @ ) SR
@41 DatalnA AD bl | I EEEEEEEE
Y3 DatainB A0 — senieeaeaenenuniBRiRER i seeenenuniRRRRRR R R R RE
43 DatalnC Al T 1 | | | 1 1M |

o dd DatalnD AD | |
@45 DatalnE A0 <] 3 I
46 DatalnF A1 q B

@47 DatalnG A0 1 1 |

48 LatchOutA AX ¢ |

w49 LatchOuwtB AX J

50 LatehOuC AX 1 |

51 LetchOutD AX ] J 1

52 LatchOutE AX [

53 LatchOutF AX 1

54 LatchOuG AX |

@55 DataOUA AX S| Ll | .
56 DatzOuB AX SEEE e TEE | I -+
57 DataOuC AX 4 71 LT

@58 Data0uD AX T L e L LT | BEBEEEE 1I

59 DataOutE AX T LT 1 J | EEEREE
X DetaOuF AX { L1 1 I
1 DataOutG AX A1 | 11 1 T T il

Figure 13 above shows the output waveform with the added VHDL MUX component. Again,
the simulation waveform is identical to the waveform before component replacement, indicating
that the component is functioning identically to the old one as intended. Functionality was
verified on the FPGA.
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Figure 14: VHDL Code for 4-Bit Latch

1 Eentity MyLatch IS

P = PCORT (

3 LatchIn: IN BIT VECTIOR (3 DOWNTIO O) :="0000";
4 LatchEnable: IHN BIT:='0';

o LatchOut: OUT EIT VECTIOR (3 DOWNTC O)

& )z

7 end MyLatch;

&

g9 Earchitecture dataflow OF MyLatch IS5

10 signal dig sig: BIT VECTOR (3 DOWNTO 0) :="0000";
11 Ebegin

12 dig =sig <=

13 LatchIn WHEN LatchEnable = '1';

14

15 LatchOut (3 DOWNTC 0)<= dig sig(3 DOWNTIC 0):

1& end dataflow;

Figure 14 above shows the VHDL code for the replacement 4-bit latch. It operates by setting a
conditional output based on whether LatchEnable is HIGH or LOW, just as the physical
component acts.

Figure 15: Waveform Simulation with added Single VHDL 4-Bit Latch

ps 200ns 1600ns 2400rs 3200ns 400,0ms 480,0ms 5500ns 6400ns 7200ns 800
Name Vet o5 ' ' ' . ' : : : : :
0 CounterlCear | AD
1 Courter20ear | AD
B2 ReadEnable AD
B3 ] AD
4 N a1
5 Sel us E] [ 14 i
10 WriteEnable IS | 1T 1T 1T [} ) LT ] LS LI LS ]
w11 WirteClock At Lo n | M 1 n ] M
> 12 ReadClock AD M. 1In N
13 MuoxSel AD || 1
[l Latchelock AD M 1 M N
15 WriteCount Al 0] 1] k4 2] 1] [E] E] ] 0] [l ] 2] B
18 ReadCount Al 0 T ¥ 127 i M ) €] i il ) @
w2 WiriteVal Al 10] 121 i 3] [10] Bl [6] A} (6] ] 12] Gl AUl [5] ) SNET
26 LatchOut Alll [0] ) 4 2] o] K 1]
31 Dataln uz i 3 T 0 7 T 5 7 T 5 7
3% DataOut Al ] O B Z0 SN UIEEEAEE SCI AU o DI SRl 1] 8] ) 4 )] W
@41 DatalnA AD | |
@ DatalnB AD 1 RN R e NN RN
@4 DatalnC a1 T L L | | L] 1
P4 DatainD AD | | U
@45 DatalnE AD T rra . e T T
% Datalnf a1 T LT R T
47 DatalnG AD 1 1 |
48 LatchOutA AX d |
49 LatchOutB AX J
50 LatchOutC AX ] I
51 LatchOutD AX [ 1
@52 LatchOuE AX J
53 LatchOutF AX $ 1
54 LatchOuiG AX I
@5 DataOutA AX SR | R | -
56 DaiaOutB AX Sunnimes BE ainl f 1 Ir T - +<r- -
D57 DataOuC AX 4 I 1 L1
58 DataOutD AX SN N N N | 5 ] L] I
59 DataOutE AX T T L] 1 J LU J | RN S
@60 DataOut? AxX ¢ L L 1N IEEEE RN N
D6l DataOutG AX a1 1 1L 1 SRS EEEEEE N SR

Figure 14 above shows the output waveform with the added VHDL Latch component. Again, the
simulation waveform is identical to the waveform before component replacement, indicating that
the component is functioning as intended. Functionality was verified on the FPGA.
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Figure 16: VHDL Code for Counter

1 =|E:1tit'_.,r counterVHDL i=s

2 = port |

2 UP: IN bit:

4 RB,QR: OUT bitc):

o end counterVHDL;

6

7 E architecture behaviour of counterVHDL i=s

8 Ebegin

=] -] count up: process (UP)

10 variable count walue: natural:=0;

11 begin

12 = if (UP='1') then

13 count value := (count value+l) mod 4:
14 QL <= pit'wal (count wvalue mod 2);
15 QB <= bit'wal (count_walue Fo2):
16 end if;

17 end process count_up;

18 end behaviour;

Figure 16 above shows the VHDL code for the replacement Counter. It operates by using
modulus 4 to keep the count value from 0-3, and then splits up that modded binary value via a
combination of modulus 2 and division by 2, a trick learned in ECE 142 Computer Organization.
Doing so allows the count value to be split into two output bits, just as in the schematic.

Figure 17: Waveform Simulation with added Single VHDL Counters

- Dps 80.0ns 160,0 e 2400ns 320,0ns 4000ns 4800ns 560,0ns 6400 ns 720,0ns 800,
alue at i i i i i i i i i i
ez 2570 | B7ne

0 Counter1Clear AD

w1 ReadEnable AD

2 M AD

3 CN Al

[Tk Sel us 9 3 i il

=3 WitzErable Al U L LI L 1 U 1 LI LT ] U L

=10 WiiteClack S T | I | [l | Il | Mn

w11 ReadClack AD M1

12 MuxSel AD 1 1 1 1

=13 Latchclock AD M M M M

4 WriteCount Al 0T 0] ¥ 2] 0] 12] €] B [0] 1] 1] 2] E
217 ReadCourt A o1 SRS BV 4 i} ] [0} ) S

220 WriteVal Al KO el i ] T10] i} 5H2: 0] 1] B (i B ) SO

o] LatchOut Al 0] ) 4 2] 1o ) 4 E
30 Dataln U2 3 T 10 3 ] 5 7 7 5 7

35 DataCut ALl [0 ¥ E 20 SN IS S SO G0 26 SN O ) D 4G5 R 0] &1 il ki

@40 DatalnA AD : | : | 1 1 INEEEEEEEEN
o DatainB AD 1 BmEl -
=42 DatalnC Al  F | A | ! | M1

23 DatainD AD | 1\ 1 | | | Jro
o4 DatalnE AD T T 1 | ] 1L T

@45 DatalnF A1 S 1 ... 1N LN O
@6 DatalnG AD [ : | | L1 | IR
47 LatchOutA AX

A 48 LatchOutB AX |

@48 LatchOuC AX 1 |

50 LatchOutD AX | 1

o 51 LatchOutE AX [

@5 LatchOuF AX 1

53 LatchOuG AX |
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Figure 13 above shows the output waveform with the added VHDL Counter component. Again,
the simulation waveform is identical to the waveform before component replacement, indicating
that the component is functioning as intended. Functionality was verified on the FPGA.
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Figure 18: Final Schematic with VHDL Components.
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Figure 18 above shows the final schematic, with the different components replaced by VHDL
equivalents. A successful demonstration of the board was shown to Vianney Mixtur.
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Conclusion:

All results were as expected. The FPGA board was able to perform as it was intended, producing
the same outputs as those generated in the Quartus Il simulation and on the protoboard ciruit.
The major advantage of the FPGA was that nothing had to be built, since everything was on one
integrated circuit chip. It was fast, since different versions of the cicuit could rapidly be tested by
downloading the code to the board. VHDL coding was also introduced.

Summary:

The goal of Laboratory 13 was to adapt the 4-bit ALU circuit from lab 12 to the Altera DE2
FPGA board. After successful upload and testing of the schematic to the FPGA, parts were
sequentially replaced with VHDL equivalents to demonstrate the FPGA’s ability to read VHDL
coding. Rigorous testing was conducted at each stage to prevent build up of error and find
problems at their root cause. In the end, the board was able to successfully perform all functions
intended.

(References on next page)
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